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Shear-induced particle diffusion in inelastic hard sphere fluids
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A large-scale numerical simulation of a system of inelastic, rough, hard spheres of volume fragtion
=0.565, starting from a disordered configuration in a Couette geometry, shows a transition to a layered state,
which possesses long-range orientation order, after long run times. This phase transition is shown to cause a
dramatic decay of the long-time transverse self-diffusion coefficient of particles. As the solid volume fraction
is increased to 0.58, the dimensionless transverse self-diffusion coefficient decays further, approaching a value
of order 105, which indicates structural arre§61063-651X98)50811-3

PACS numbgs): 83.50-v, 46.10+z, 05.20.Dd, 61.20.Ja

In a sheared granular flow, grains do not move alongeter as the interior particlgpositioned aZ= +L,/2, and no
streamlines but instead exhibit fluctuating motions due tgeriodic boundary conditions are assumed in the directions
encounters with their neighboring grains. Hence, the grainsormal to the walls.
within the assembly are continually losing information con-  In contrast to the previous simulatiof$] in which the
cerning their relative positions due to shearing. This loss oparticles were initially organized in a triangular prismatic
information characterizes the diffusive motion of the grains.packing, the initial disordered hard-sphere configuration is
Recently, computer simulations have been used to develop@eated using the technique described by Clarke and Wiley
better understanding of diffusion processes in unboundef#]. For the present simulations, an initial set of random
dense granular shear floys]. This attempt led to a conjec- overlapping spheres is chosen. Then the individual spheres
ture that a rapidly flowing monosized granular material is aare moved randomly until the overlaps are removed. On one
diffusive system except at large solids concentrations. It waside of the labeling planeZ=0, the particles are dark in
reported that at a volume fractiop.~0.56, the grains ap- color, whereas on the other side the particles are light in
peared to be trapped in a microstructure and prohibited fromgolor. The snapshot of the initial configuration of dark col-
moving relative to their neighbors. This behavior, whichgred particles, projected onto the plane normal to the shear
characterizes a crystalline system, has not been observed g,y in thex direction(which is theyz plane in this wor, is
experimc_ants of rapid granular flows bet'ween parallel roughshown in Fig. 1a).
boundaries[2]. In contrast, clear experiment evidenf2] A shear flow is applied to the aforementioned system of

exists for the movement of the pa_rticles in_directions tra.mshard-dissipative spheres, by increasing average shear rate
verse to the bulk motion at even higher solid concentranon?rom 7610 tov=2U/L %4’5_1 HereU represents the veloc-
than those examined in the previous simulatiphls Y z ' P

.rity of one of the walls. Dissipation induced by particle-
dense granular flows occurring in common industrial Sysparticle collisions is modeled using a coefficient of restitu-
tems, for which the significance of interactions between thdion: €=0.84, as well as a surface friction coefficient,
grains and the boundaries on the flow dynamics is obvious— 0-41[5]- The values of the dissipation parameters are cho-
Hence, it is important to examine whether a transition vol-S€N to be close to those used in the previous simulafibhs
ume fraction,¢., exists for a confined dense granular flow ~ For sufficiently long run times, the system eventually
of monosized particles. To this end, three-dimensional comtéaches an equilibration state in which the amount of energy
puter simulations of the flow of a system of dense, roughSupplied by shearing is balanced by that lost due to dissipa-
inelastic, optically bidisperse hard spheres, with 4296 intellve collisions as well as frictional interactions. In order to
rior particles that are the same in terms of size and interadnonitor the evolution of the system toward a state of equili-
tion, but have different colors, are carried out in a Couettdration, the instantaneous values of dimensionless normal
geometry. Since a color label plays no role in the particleStress exerted by the particles on the bottom @)l are
dynamics, the algorithm presented in a previous stigly recorded. The manner in which the dimensionless normal
can be used to create the particles trajectories in a rectangulgifessP*, of the aforementioned system varies with dimen-
periodic computational boxwith the lengths of the three Sionless timef* =tU/L,,is illustrated in Fig. 2. The decay
sides of the box equal to,=1, L,=1, andL,=0.497. The of the absolute value of mean dimensionless normal stress,
reader is referred there for more details, including a geotP*|, appears to be almost exponential fbr200. There is,
metrical description of the problem. The walls are comprisechowever, a significant decrease |#f*| at aboutt* ~200,

of 400 hemispherical massive particl@gth the same diam- which is clear evidence of a phase transition.
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-0.5 0 05 -05 0 0.5 FIG. 3. Dimensionless square transversal displaceménz*?)
Y Y =(AZ?/(2R)?), as a function of dimensionless time*=7U/L,, for

L,/(2R)~10.25. The circles, squares, and diamonds represent 2) at
FIG. 1. (8) Snapshot of the initial configuration of dark colored particles t* ~55, 159, and 245, respectively. The solid lines are linear fits through the
in the computational box projected on the plane.(b) The configuration  data for 7* >1.The dimensionless long time transverse self-diffusion coef-
projected on theyz plane att* ~55. (c) The configuration at* ~159. (d) ficients for cases represented by the circles, squares, and diamorid$ are
The final configuration at* ~ 250. =D/[2(2R)?U/L,]~1.2x10"3, 4x 104, and 4<10°°, respectively. The
values of the dissipation parameters, solid volume fraction, and shear rate

Time evolution of lateral movements of dark colored par-2"¢ found in Fig. 2.

ticles, shown in Fig. 1, clearly indicate that at average shear
rate y~4 s !, a shearing, monosized granular flow of solid direction at dimensionless tim¢, which is normalized by
volume fractiongs= 0.565, could be a diffusive system. This the particle diameterN is the number of particles in the
observation leads to the question whether the absence of patemputational boxt is time, 7* shows that the samples are
ticle diffusive motion in the unbounded rapid monosizedtaken at time intervat apart, and the angle brackets indicate
granular flow simulations of Campbdll] could be caused the ensemble average. For the sake of brevity, further infor-
by remnants of the initial lattice configuration for spheres. mation concerning the particle diffusivity in theandy di-

In attempting to quantify the diffusional movements of rections will be given elsewhere.
particles illustrated in Fig. 1, variations of the mean square Considering variations of the dimensionless normal stress
displacemen{AZ*?)=N"13N ([Z* (t* + 7*)—Z*(t*)]?)  with dimensionless time, shown in Fig. 2, there is clear in-
with the argumentr* =7U/L, at different dimensionless dication of an ordering phase transition at abut 200. In
time t* are shown in Fig. 3. At long™, deviation from the an ordered system the changes of geometry of a cage formed
free diffusion regimg7] becomes apparent witdZ*2) be- by the nearest neighbors of a particle due to fluctuations
having almost linearly inr*. This indicates that the dynam- become infrequent. This could result in a dramatic decay of
ics has reached a new diffusion regime for which the diffu-the long-time transverse self-diffusion coefficient. Using the
sion coefficient can be calculated using Einstein relaf&n  results given in Fig. 3, it can be readily shown that the di-
This property of the system, which is called the long-timemensionless long-time transverse self-diffusion coefficient,
transverse self-diffusion coefficient, reflects the cooperativd* =D/[(2R)?2U/L,], decreases by an order of magnitude
effects of long-range spatial correlations. He@'(t*)  due to the phase changetat200.

=Z;(t*)/(2R)represents the position of particiein the z At this point it would be desirable to have a knowledge of
the instantaneous values of the dimensionless velocity com-

ponent in thez direction, V3 =V,/U. Following the ap-

0 proach proposed by Bakshi and Stephanopo{#dsan ap-
oL proximate continuous function far; in terms of the Battle-
Lemarie waveletq10] is obtained using the simulations
4 results. Figure 4 illustrates the contours of constanipin
a the yz plane normal to the shear flow at
X*=X/L,=—0.28andt* ~250. Here,V, is the velocity
-6 component in the direction. The structure of velocity field,
as shown in Fig. 4, indicates that clusters could exist in the
-8 | | computational box. However, further numerical work is re-
100 200 quired to provide a more realistic description of the move-
t* ments of clusters in a rapidly flowing monosized granular

material. It is worth mentioning that there is no periodic
" . . . -
erted by the particles on the bottom wall as a function of dimensionless tim boundary conditions in the-direction, thereforevz should

t* at ¢s~0.565 for the coefficient of restitutios= 0.84, the surface friction %e Zero az:_ i L,/2. . o .
coefficientu=0.41, andy=4 s 1. Here,P represents the normal stressand ~ BY €xamining the radial distribution function for the

pp is the material density. sample att*~250, shown in Fig. 5, a peak af =r/R

FIG. 2. Dimensionless normal stresB} =P/[4p,R*(2U/L,)?], ex-
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FIG. 6. Dimensionless normal stress¥,= P/[4p,R*(2U/L,)?], ex-
erted by the particles on the bottom wall as a function of dimensionless time
t* for the coefficient of restitutioe=0.93, the surface friction coefficient
1=0.123, andy=4 s *. Upper and lower curves represent the wall stresses

e PPN T T T T T T T at solid volume fractiongps~0.565, andps~0.582, respectively.
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Y order. To answer this question a set of orientational order
parameterg11], denoted byQ,,(R)=Yn(8(R),#(R)), is
associated with each borfd?2]. It is investigated whether
their rotationally invariant combinationsQ,=[4/(2l
+1)=! __1|Qml?1¥2 can ever become nonzerolat4, 6,
~24/3 can be observed indicating the existence of ordere@ and 10 for the final configuration &t ~250. Here,R
zone in the system. Her® represents the particle radius. represents the positon of the bond midpoint,
Therefore, it can be concluded that the initially disorderedy, [g(R),#R)] are spherical harmonicg(R)and#(R) are
system has evolved to an ordered state in the presence oftge polar angles of the bond measured with respect to a fixed
shear flow. To Clarify this further, the degree of tranS|ati0nalreference coordinate system, and the averaged quantity’

order is tested by evaluating the translational order paralemz<le(R)>, is taken over the bonds joining particles in
eter, which is described by Fourier componepfsin the  ihq sample with their near neighbors.

expansion of the mass densjtyr;) = po+ Zypi exp(k-r;). It is found that the signal at=6 is strong Qg~0.4)

Here, k is a reciprocal lattice vector and is the position g qqesting extended correlations in the orientations of bonds,
vector of the center of particie By choosingk=(27/1)z, it possibly with an icosahedral symmetry. However, the size of
is found thatp, is 0.8 forl=L,/11. This could be evidence ine Qg~0.24 suggests the symmetry of the bond-oriented
of a layered state with only eleven layers. Foparallel 1o states is not perfectly icosahedral and some cubic order may
—x+y—z the value ofp, is found to be close to zero, indi- pe present. This would be consistent with the presence of
cating that the presence of the sliding fcc phase in th? Syste@pveral icosahedral clusters in the sample. This may support
can be ruled out. Here y, andz represent unit vectors in the  the aforementioned conjecture concerning the presence of
X, y, andz direction, respectively. _ clusters in the sample. In this light, at a moderate average
In the absence of cuboctahedral symmetry, an obvioughear rate, a system of inelastic, rough, hard spheres of solid

question is whether a particle and its 12 nearest neighbors igyme fractiong,=0.565 could exhibit behavior similar to
the above-mentioned system prefer to adopt any orientationg! |ayered icosahedrally oriented liquid.

More information regarding possible types of orienta-
tional order of the above-mentioned system can be obtained
from the bond-angle correlation functio@s [13]. Consider-
ing the value ofGg(r*) at larger*, shown in Fig. 5, it can

be concluded that the system behaves similar to an icosahe-
: Lot 10-2 drally oriented liquid, possessing a degree of symmetry in-
1 A ."v":,_.\."\.;\.ﬁd\aﬁ termediate between those of a crystal and a liquid.
‘ The amplitude of fluctuations in the wall stress t&t
5 : 0 5 10 >200, shown in Fig. 2, is much smaller than that recorded in
r* the tests of Savage and Sayéd]. The gray colored curve in
i Fig. 6 illustrates that stronger fluctuations in the wall stress

are obtained as compared to those in the previous case,

\‘M_M shown in Fig. 2, by increasing the coefficient of restitution to
1 I I I e=0.93, and decreasing the surface friction coefficient to
0 2 4 6 8 ©=0.123. The fluctuations appear to be closer to those in the
annular shear cell tests of Savage and Sdyef]. Higher
FIG. 5. Radial distribution function for the sample tit~250. Inset: fluctuations resulting from lower dissipations of the system,

The bond-angle correlation functioe(r*), vs dimensionless distances leads to an increase in the transverse self-diffusion coeffi-
r*=r/R for the sample at* ~250. cients, as shown in Fig. 7. However, the results obtained are

FIG. 4. (Color) Contours of constant dimensionless velocity component
in the z direction,V; ,in theyz plane atx* = —0.28 andt* = 250.
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FIG. 7. Variations of(AZ*?) with the dimensionless time*. The FIG. 8. Variations of(AZ*2) with the dimensionless time*. The
circles, squares, represefdZ*?) at the solid volume fraction ofhs circles representAZ*2) of the system comprised of smooth, inelastic par-
~0.565 att* ~159, and 245, respectively, whereas the diamonds represenicles with the coefficient of restitutiona=0.93, whereas the squares repre-
(AZ*?) at the solid volume fraction of;~0.582 att*~200. The solid  sent that of the rough, inelastic particles with the dissipation parameters

lines are linear fits through the data fgt>1. The calculated value d* =0.123 ande=0.93. The calculated values Bf* for the cases represented
for the cases represented by the circles, squares, and diamonds arep§ the circles and squares are X.20"2 and 1.5< 10~ 3, respectively.

X1074, 1074, and 10°5, respectively. The values of the dissipation param-
eters and the shear rate are found in Fig. 6. It should be noted that at the higher solid volume fraction

of ¢4~0.582, the transition time to an ordered state is quite
much smaller than those measured by Natarajan, Hunt, arghort for a system of rough particles, as shown in Fig. 7.
Taylor [2] in gravity-driven channel flows of granular mate- Moreover, the dimensionless long time transverse self-
rials. diffusion coefficient approaches to a value®f~10° in-

In order to further examine the effect of particle rough-dicating a nearly frozen structure.

ness on the diffusivity, variations of the mean square dis- In summary, simulations of a system of sheared, dense,
placementAZ*?) with 7* for systems of smooth and rough monosized granular material indicate that the system could
particles at solid volume fraction @f;~0.565, are plotted in  be diffusive at solid volume factions even higher than 0.56.
Fig. 8. The samples are takentat=40 which is close to the In fact, it is shown that the calculated dimensionless trans-
average dimensionless residence time of particles in expenrerse long-time self-diffusion coefficient for a dense system
ments of Hunt and co-workerl®]. The calculated dimen- (¢¢~0.565) comprised of smooth particles is close to that
sionless long-time transverse self-diffusion coefficient forpreviously reported for a dense gravity-driven channel flow
the system comprised of smooth particles I8°~1.2 in which the average residence time of particles was rather
X 1072, which is an order of magnitude higher than that for short. However, at long run times, a phase transition is seen
the system of rough particles. The above-mentioned valuto occur for systems of rough particles, which causes a sharp
for the system of smooth particles is close to those measuregtop in the transverse long-time self-diffusion coefficient of
by Natarajan, Hunt, and Taylor at moderate shear rates. Thitie particles. The system is found to behave like an icosahe-
observation supports Menon and Duridb] statement that drally oriented liquid. Evidence also exists for the occurrence

the dynamics of grains in a dense granular flow are domief clustering, which will be examined more critically in a
nated by collisions rather than sliding contact. future study.
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